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Topology of event distributions as a generalized definition of phase transitions in finite systems
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We propose a definition of first order phase transitions in finite systems based on topology anomalies of the
event distribution in the space of observations. This generalizes the definitions based on the curvature anoma-
lies of thermodynamical potentials, provides a natural definition of order parameters, and can be related to the
Yang-Lee theorem in the thermodynamical limit. It is directly operational from the experimental point of view.
It allows to study phase transitions in Gibbs equilibria as well as in other ensembles such as the Tsallis
ensemble.
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Phase transitions are universal examples of s
organization. From the theoretical point of view they a
defined on very robust foundations in the thermodynam
limit through nonanalyticities of the thermodynamical pote
tial. However, many physical situations fall out of this the
retical framework because the thermodynamical limit is
reached. The forces might not be saturating such as
gravitational@1# or the Coulomb forces. The system might
too small such as any mesoscopic system@2–4,6,7#. Since
the partition sum of a finite system is analytical, the stand
definition of phase transitions cannot be applied. The
proper definition independent of the thermodynamical lim
should be achieved.

This issue is debated since 1960s. It has been prop
@8# to define and classify phase transitions according to
distribution of zeroes of the canonical partition sum in t
complex temperature plane@9#. Alternatively it has been
claimed that phase transitions in finite systems can be un
cally signed through a curvature anomaly of the entro
@7,10#. The existence of a link between these two definitio
based on two different statistical ensembles is still to
proven. In particular it is not clear if phase transitions ex
independently of the ensemble or if they can be studied o
through the topological properties of the microcanonical
tropy.

In this paper, we propose the possible bimodality of
probability distribution of observable quantities as a conn
tion between these ideas, and we establish a bridge to
thermodynamical limit. This definition is already under a
plication in experiments@6,3–5#.

The order parameter is a quantity that can be known
every single event~i! of the considered statistical ensemb
j5$ i %. It is an observable that clearly separates the t
phases. It is not necessarily unique. Typical examples of
der parameters are one body operators such as the densi
the liquid gas phase transition or the magnetization in
ferromagnetic transition.

Let us consider a set ofK independent observablesB̂k ,
which form a space containing one possible order parame
We can sort events according to the results of the meas
mentb( i )[(bk

( i )) and thus define a probability distribution o
the observablesPj(b).
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Within the quantum mechanics framework, the statisti
ensemble j is described by the density matrixD̂j

[(nuCj
( i )& Pj

( i ) ^Cj
( i )u. The statesuCj

( i )& are elements of the

Fock subspaceF of the system. The observablesB̂k are op-
erators defined onF. The probability distribution of the re-
sults of the observationb reads

Pj~b!5Tr D̂jd~b2B̂![^d~b2B̂!&.

We propose to define phase transitions through the topo
of Pj(b). In the absence of a phase transition lnPj (b) is
expected to be concave. An abnormal~e.g., bimodal! behav-
ior of Pj(b) or a convexity anomaly of lnPj (b) signals a
phase transition. More specifically, the larger eigenvalue
the tensor

Tj
k,k8[

]2ln Pj~b!

]bk]bk8

~1!

becomes positive in presence of a first order phase trans
@10#. The associated eigenvector defines the local order
rameter since it allows the best separation of the probab
Pj(b) into two components that can be recognized as
precursors of phases. If the largest eigenvalue is zero,
number of higher derivatives that are also zero defines
order of the phase transition. In this paper we shall conc
trate on first order.

The definition of phase transition from the topology
Pj(b) contains and generalizes the definitions based on c
vexity anomalies of thermodynamical potentials. An
Boltzmann-Gibbs equilibrium is obtained by maximizing th
Shannon information entropyS[2Tr D̂ ln D̂ in the given
Fock spaceF under the constraints of the various obse
ables B̂k known in average. A Lagrange multiplierak is
associated with every constraint. Other constraints can
applied to the system through conservation laws on the
cessible spaceF or through additional Lagrange multiplier
l l if some other observableÂl has an expectation valu
known in average or imposed by a reservoir. The statist
ensemble is defined asj[(F,l,a) and its density matrix
reads
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D̂F la5
1

ZF la
expS 2 (

l 51

L

l l Âl 2 (
k51

K

akB̂kD . ~2!

This ensemble is consistent with the fact that the order
rameter is in general not controlled on an event by ev
basis but measured.Pj(b) can be written as

ln PF la~b!5 ln W̄F l~b!2 (
k51

K

akbk2 ln ZF la , ~3!

whereW̄F l(b)5ZF l0PF l0(b) is nothing but the partition
sum of the statistical ensemble associated with fixed valub
of all the observables. Indeed, the two partition sums
related through the usual Laplace transform

ZF la5E db W̄F l~b!exp~2ab!.

Equation~3! clearly demonstrates that the convexity anom
lies of the thermodynamical potential lnW̄F l(b) can be
traced back from lnPF la(b). The equations of state relate
to lnW̄F l then read

āk~b![
] ln W̄F l~b!

]bk
5

] ln PF la~b!

]bk
1ak . ~4!

If W̄F l has an abnormal curvature, thenak presents a back
bending. For this statistical ensemble where thebk are the
control parameters, the coexistence can be defined as
region where oneāk is associated with three values ofbk
because of the anomalous curvature. Forak in this region the
associated probability distribution presents two maxima
a minimum. In the statistical ensemble~3! where theak are
controlled, the coexistence is then signalled by the bimod
ity of the probability distribution and the value ofak where
the two maxima have equal height is the first order transit
point.

Let us take first the example of the energy as a poss
order parameter with no other constraints,B̂15Ĥ and b1
5e. Then the considered ensemble is nothing but the can
cal one witha15b, the inverse of the temperature. The c
nonical probability reads

Pb~e!5exp@S~e!2be2 ln Z~b!#,

where the entropyS(e) is related to the level density b
S(e)5 ln W̄(e). A convex intruder inS(e) directly induces a
convexity anomaly in lnPb(e) that becomes bimodal in th
phase transition region. Therefore the definition of ph
transition through the curvature anomalies or a bimodality
the canonical probability distribution contains the form
definitions based on the occurrence of negative heat cap
ties @2,7,10,6,12#, the only condition being that the canonic
ensemble exists.

As a second example we consider the grand canon
distribution of particles. We introduceÂ15Ĥ and B̂15N̂ .
Taking l15b and a152bm we recover the usual defini
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tions of the temperature and chemical potential. We pres
results from the three-dimensional grand canonical latti
gas model with fixed volume and periodic boundary con
tions @9#. The sites of a cubic three-dimensional lattice a
characterized by an occupation numberni50,1, with the to-
tal number of particlesn5(ni . The Hamiltonian consists o
a kinetic term and a closest neighbor interaction2« ~see
Refs.@11,12# for details!. In the following the chemical po-
tential will be kept fixed at its critical valuemc523«.
Above the critical temperature the distribution of partic
number,Pbm(n) is almost Gaussian. At the critical temper
ture the flatness ofPbm signals the second order transitio
point. Below the critical temperaturePbm becomes bimoda
and defines the coexistence zone~see Fig. 1!. Indeed

ln Pbm~n!5 ln Z̄b~n!1bmn2Zbm ,

where Z̄b(n) is the canonical partition sum forn particles
while Zbm is the grand canonical one. The canonical chem
cal potential is given by

m̄b~n![2b21
] ln Z̄b~n!

]n
52b21

] ln Pbm~n!

]n
1m ~5!

and is shown in the lower part of Fig. 1. It should be notic
that a unique grand canonical chemical potentialm gives
access to the whole distribution of canonical chemical pot
tials m̄b(n). In the phase transition regionm̄b presents a
strong back bending that reflects the bimodal structure of
probability distribution.

FIG. 1. Grand canonical lattice-gas results atm523e and T
,Tc ~open symbols!, T.Tc ~filled symbols!. Top: particle mass
number probability distributionn. Bottom: canonical equation o
states from Eq.~5!.
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Let us now take the example of the liquid-gas phase tr
sition in a system ofn particles for which only the averag
volume is known. In such a case we can define an observ
B̂1 as a measure of the size of the system; for example
cubic radiusB̂154p/3n( i r̂ i

3[V̂ where the sum runs ove
all the particles . Then a Lagrange multiplierlV has to be
introduced that has the dimension of a pressure divided b
temperature. In a canonical ensemble with an inverse t
peratureb we can define different distributions that are illu
trated in Fig. 2. A complete information is contained in t
distribution Pblv

(e,v)5W̄(e,v)Zblv

21 exp2(be1lvv) since

events are sorted according to the two thermodynamical v
ables,e and v. This leads to the density of statesW̄(e,v)
with a volumev and an energye. One can see that in the firs
order phase transition region the probability distribution
bimodal. In the spirit of the principal component analysis
can look for an order parameterQ̂5xĤ1yV̂ that provides
the best separation of the two phases. A projection of
event on this order parameter axis is also shown in Fig
One can see a clear separation of the two phases.
the other hand if we cannot measure both the volu
v and the energye we are left either with Pblv

(e)

5W̄lv
(e)Zblv

21 exp(2be) giving access to the microcanonic

partition sumW̄lv
(e) at constantlv or with the probability

Pblv
(v)5Z̄b(v)Zblv

21 exp(2lvv) leading to the isochore ca

nonical partition sumZ̄b(v). Since both probability distribu-
tion Pblv

(e) and Pblv
(v) are bimodal the associated par

tion sum does have anomalous concavity intruders,
negative heat capacity as well as negative compressibili

Let us now study the canonical distribution of ener
B̂15Ĥ and magnetizationB̂25M̂ the Ising model. The per
tinent statistical ensemble has two Lagrange multipliers,
canonical temperaturea15b and a magnetization constrain
a25bh that has the dimension of a magnetic field divid

FIG. 2. Volume and energy distribution of a confined canoni
lattice-gas model in the first order phase transition region with th
associated projections.
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by a temperature. Some distributionsPb(e,m) are shown in
Fig. 3. AboveTc only the paramagnetic phase is prese
Below Tc we observe a first order phase transition. The
modal structure in them direction corresponds to a negativ
suceptibility in a constant magnetization ensemble. It sho
be noticed that the projection on the energy axis does
show anomalies: at variance with recent claims@13#, the en-
ergy cannot not be an order parameter. AtTc the distribution
presents a curvature anomaly only on the low energy s
respect to the maximum. Therefore at this point the curvat
passes through zero signalling a second order phase tr
tion. Since in finite systems the canonical distribution for a
b,m allows a complete exploration of the microcanonic
entropy surface~in the limit of the total number of event
analyzed!, the whole microcanonical phase diagram can
principle be drawn from any single canonical temperatu
As an example the croissant shape of the distribution atTc
not only defines the critical energyec and magnetizationmc
of the second order phase transition but also allows to in
the coexistence line where the first order phase transi
takes place. Indeed a constant energy cut of the distribu
below ec directly represents the entropy as a function
magnetization and has a bimodal shape.

An important issue is to show how the presented defi
tion can be related to the usual one at the thermodynam
limit. A way to address this problem is to look at the zeros
the partition sumZF la in the complexa plane and to use the
Lee-Yang theory. For sake of simplicity let us consider on
one couple of thermodynamical wariables (a,b) Using Eq.
~3! we see that the partition sum for a complex parame
g5a1 ih is nothing but the Laplace transform of the pro
ability distributionPa0

(b) for a parametera0 @14,15#

Zg5E dbZa0
Pa0

~b!e2(g2a0)b.[E dbpa~b!e2 ihb.

In order to study the thermodynamical limit~when it exists!,

l
e

FIG. 3. Magnetization and energy distribution of a canoni
Ising model in an external field above, at and below the criti
temperature.
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if pa(b) is monomodal we can use a saddle point appro
mation around the maximumb̄a giving Zg .5efg(b̄a), with

fg~b!5 ln pa~b!2 ihb1h2C~b!/21 ln S 2pC~b!

2 D ,

whereC215]b
2 ln pa0

(b). However, if W̄a0
(b) @see Eq.~4!#

has a curvature anomaly it exists a range ofa for which the
equation]b ln@W̄a0

(b)#2(a2a0)50 has three solutionsb1 ,

b2, andb3. Two of these extrema are maxima so that we c
use a double saddle point approximation that will be va
close to thermodynamical limit@14# zg5 efg(b1)1 efg(b3)

5 2efg
1

cosh(fg
2), where 2fg

15fg(b1)1fg(b3) and 2fg
2

5fg(b1)2fg(b3). The zeros ofZg then correspond to
fg

25 i (2n11)p. The imaginary part is given byh52(2n
11)p/(b32b1) while for the real part we should solve th
equation Refg

250. In particular, close to the real axis th
equation defines ana that can be taken asa0. If the bimodal
structure persists when the number of particles goes to in
ity, the loci of zeros corresponds to a line perpendicular
the real axis with a uniform distribution as expected for
first order phase transition.

Finally we stress that the presented definition of ph
transition based on the probability distribution can be
tended to other ensembles of events that do not correspo
a Gibbs statistics. As an example, we analyze the co
quence of going from Gibbs to Tsallis@16# ensemble on the
existence of a phase transition, for a system controlled by
external parameterl ~e.g. pressure!. For a givenl the sys-
tem is characterized by a density of statesW̄l(e). For a
critical value of l5lc the associated entropySl(e)
5 ln W̄l(e) presents a zero curvature and below a con
intruder. The Tsallis probability distribution reads (q15q
21) @16#

Pl
q~e!5W̄l~e!~11q1be!2q/q1/Zl

q .

Computing first and second derivatives of lnPl
q one can see

that the maximum of lnPl
q occurs for the energy that fulfills

the relationT̄l5(b211q1e)/q whereT̄ is the microcanoni-
r

g
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cal temperature while this point has a null curvature ifC̄l

5q/q1 whereC̄l is the microcanonical heat capacity. The
the Tsallis critical point occurs above the microcanoni
critical point and one expects a broader coexistence zon
the Tsallis ensemble. The curvature at the maximum ofPl

q is
T̄2]e

2 ln Pl
q521/C̄l1q1 /q. Far from theC divergence line,

this curvature is not very different from the microcanonic
heat capacity sinceq1 /q is small.

In conclusion, we have proposed a definition of pha
transitions in finite systems based on topology anomalie
the event distribution in the space of observations. We h
shown that for statistical equilibria of Gibbs type this gen
alizes the definitions based on the curvature anomalies
entropies or other potentials. It gives an understanding
coexistence as a bimodality of the event distribution, ea
component being a phase. It provides a definition of or
parameters as the best variable to separate the two maxim
the distribution. Some first applications based on the prop
ties of probability distributions have already been repor
@6,3–5#. From the experimental point of view, one ma
worry about the statistical significancy of the curvatu
analysis in a finite sample of events. For any sorting varia
b, if Ki events belong to the binbi , the uncertainty on the
extracted entropy curvature estimated through a three p
derivative is 6Db2/Ki . For instance for a reliability of
99.99% in a negative heat capacity measurement, one n
Ki.18c2T4/(De4n2), wheren is the number of particles,T
is the temperature, ande,c are the energy and heat capac
per particle. These statistical uncertainties are generally w
under control in actual experiments@3#.

The nature of the order parameter provides also a bri
toward a possible thermodynamical limit. If it is sufficient
collective it may survive until the infinite volume and infinit
number limit. If the anomaly also survives the saddle po
approximation will be correct and the finite size phase tr
sition becomes the one known in the bulk. Finally the p
posed definition can be extended to different statistical
sembles such as Tsallis ensemble.

We would like to thank all the participants of the EC
workshop on ‘‘Phase transitions in finite systems’’ for stim
lating discussions.
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